Building a Parallel Computer System for $18, 000 that Performs a Half Peta-Flop per Day
نویسندگان
چکیده
Techniques of evolutionary computation generally require significant computational resources to solve non-trivial problems of interest. Increases in computing power can be realized either by using a faster computer or by parallelizing the application. Techniques of evolutionary computation are especially amenable to parallelization. This paper describes how to build a 10-node Beowulf-style parallel computer system for $18,000 that delivers about a half petaflop (10 floating-point operations) per day on runs of genetic programming. Each of the 10 nodes of the system contains a 533 MHz Alpha processor and runs with the Linux operating system. This amount of computational power is sufficient to yield solutions (within a couple of days per problem) to 14 published problems where genetic programming has produced results that are competitive with human-produced results.
منابع مشابه
A fast wallace-based parallel multiplier in quantum-dot cellular automata
Physical limitations of Complementary Metal-Oxide-Semiconductors (CMOS) technology at nanoscale and high cost of lithography have provided the platform for creating Quantum-dot Cellular Automata (QCA)-based hardware. The QCA is a new technology that promises smaller, cheaper and faster electronic circuits, and has been regarded as an effective solution for scalability problems in CMOS technolog...
متن کاملA fast wallace-based parallel multiplier in quantum-dot cellular automata
Physical limitations of Complementary Metal-Oxide-Semiconductors (CMOS) technology at nanoscale and high cost of lithography have provided the platform for creating Quantum-dot Cellular Automata (QCA)-based hardware. The QCA is a new technology that promises smaller, cheaper and faster electronic circuits, and has been regarded as an effective solution for scalability problems in CMOS technolog...
متن کاملIntroducing New Structures for D-Type Latch and Flip-Flop in Quantum-Dot Cellular Automata Technology and its Use in Phase-Frequency Detector, Frequency Divider and Counter Circuits
Quantum-dot cellular automata (QCA) technology is an alternative to overcoming the constraints of CMOS technology. In this paper, a new structure for D-type latch is presented in QCA technology with set and reset terminals. The proposed structure, despite having the set and reset terminals, has only 35 quantum cells, a delay equal to half a cycle of clocks and an occupied area of 39204 nm2. T...
متن کاملStatic Task Allocation in Distributed Systems Using Parallel Genetic Algorithm
Over the past two decades, PC speeds have increased from a few instructions per second to several million instructions per second. The tremendous speed of today's networks as well as the increasing need for high-performance systems has made researchers interested in parallel and distributed computing. The rapid growth of distributed systems has led to a variety of problems. Task allocation is a...
متن کاملThe Effects of Strained Multiple Quantum Well on the Chirped DFB-SOA All Optical Flip-Flop
In this paper, based on the coupled-mode and carrier rate equations, a dynamic model and numerical analysis of a multi quantum well (MQW) chirped distributed feedback semiconductor optical amplifier (DFB-SOA) all-optical flip-flop is precisely derived. We have analyzed the effects of strains of QW and MQW and cross phase modulation (XPM) on the dynamic response, and rise and fall times of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999